Information on Result #546830
There is no linear OA(3199, 215, F3, 132) (dual of [215, 16, 133]-code), because residual code would yield OA(367, 82, S3, 44), but
- the linear programming bound shows that M ≥ 11063 764601 718263 371177 932141 744468 313023 / 98 314060 > 367 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3200, 216, F3, 133) (dual of [216, 16, 134]-code) | [i] | Truncation | |
2 | No linear OA(3201, 217, F3, 134) (dual of [217, 16, 135]-code) | [i] | ||
3 | No linear OOA(3200, 215, F3, 2, 133) (dual of [(215, 2), 230, 134]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3201, 215, F3, 2, 134) (dual of [(215, 2), 229, 135]-NRT-code) | [i] | ||
5 | No linear OOA(3199, 215, F3, 2, 132) (dual of [(215, 2), 231, 133]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3199, 215, F3, 3, 132) (dual of [(215, 3), 446, 133]-NRT-code) | [i] | ||
7 | No linear OOA(3199, 215, F3, 4, 132) (dual of [(215, 4), 661, 133]-NRT-code) | [i] | ||
8 | No linear OOA(3199, 215, F3, 5, 132) (dual of [(215, 5), 876, 133]-NRT-code) | [i] | ||
9 | No digital (67, 199, 215)-net over F3 | [i] | Extracting Embedded Orthogonal Array |