Information on Result #546831

There is no linear OA(3200, 222, F3, 132) (dual of [222, 22, 133]-code), because residual code would yield OA(368, 89, S3, 44), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(3201, 223, F3, 133) (dual of [223, 22, 134]-code) [i]Truncation
2No linear OA(3202, 224, F3, 134) (dual of [224, 22, 135]-code) [i]
3No linear OOA(3201, 222, F3, 2, 133) (dual of [(222, 2), 243, 134]-NRT-code) [i]m-Reduction for OOAs
4No linear OOA(3202, 222, F3, 2, 134) (dual of [(222, 2), 242, 135]-NRT-code) [i]
5No linear OOA(3200, 222, F3, 2, 132) (dual of [(222, 2), 244, 133]-NRT-code) [i]Depth Reduction
6No linear OOA(3200, 222, F3, 3, 132) (dual of [(222, 3), 466, 133]-NRT-code) [i]
7No linear OOA(3200, 222, F3, 4, 132) (dual of [(222, 4), 688, 133]-NRT-code) [i]
8No linear OOA(3200, 222, F3, 5, 132) (dual of [(222, 5), 910, 133]-NRT-code) [i]
9No digital (68, 200, 222)-net over F3 [i]Extracting Embedded Orthogonal Array