Information on Result #546831
There is no linear OA(3200, 222, F3, 132) (dual of [222, 22, 133]-code), because residual code would yield OA(368, 89, S3, 44), but
- the linear programming bound shows that M ≥ 382869 271658 659016 501421 251365 993917 662001 / 1091 802985 > 368 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3201, 223, F3, 133) (dual of [223, 22, 134]-code) | [i] | Truncation | |
2 | No linear OA(3202, 224, F3, 134) (dual of [224, 22, 135]-code) | [i] | ||
3 | No linear OOA(3201, 222, F3, 2, 133) (dual of [(222, 2), 243, 134]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3202, 222, F3, 2, 134) (dual of [(222, 2), 242, 135]-NRT-code) | [i] | ||
5 | No linear OOA(3200, 222, F3, 2, 132) (dual of [(222, 2), 244, 133]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3200, 222, F3, 3, 132) (dual of [(222, 3), 466, 133]-NRT-code) | [i] | ||
7 | No linear OOA(3200, 222, F3, 4, 132) (dual of [(222, 4), 688, 133]-NRT-code) | [i] | ||
8 | No linear OOA(3200, 222, F3, 5, 132) (dual of [(222, 5), 910, 133]-NRT-code) | [i] | ||
9 | No digital (68, 200, 222)-net over F3 | [i] | Extracting Embedded Orthogonal Array |