Information on Result #546832

There is no linear OA(3201, 229, F3, 132) (dual of [229, 28, 133]-code), because residual code would yield OA(369, 96, S3, 44), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(3202, 230, F3, 133) (dual of [230, 28, 134]-code) [i]Truncation
2No linear OA(3203, 231, F3, 134) (dual of [231, 28, 135]-code) [i]
3No linear OOA(3202, 229, F3, 2, 133) (dual of [(229, 2), 256, 134]-NRT-code) [i]m-Reduction for OOAs
4No linear OOA(3203, 229, F3, 2, 134) (dual of [(229, 2), 255, 135]-NRT-code) [i]
5No linear OOA(3201, 229, F3, 2, 132) (dual of [(229, 2), 257, 133]-NRT-code) [i]Depth Reduction
6No linear OOA(3201, 229, F3, 3, 132) (dual of [(229, 3), 486, 133]-NRT-code) [i]
7No linear OOA(3201, 229, F3, 4, 132) (dual of [(229, 4), 715, 133]-NRT-code) [i]
8No linear OOA(3201, 229, F3, 5, 132) (dual of [(229, 5), 944, 133]-NRT-code) [i]
9No digital (69, 201, 229)-net over F3 [i]Extracting Embedded Orthogonal Array