Information on Result #546840
There is no linear OA(3211, 363, F3, 132) (dual of [363, 152, 133]-code), because residual code would yield OA(379, 230, S3, 44), but
- 2 times truncation [i] would yield OA(377, 228, S3, 42), but
- the linear programming bound shows that M ≥ 5912 215514 524704 110906 945136 883000 212719 987869 884535 855049 744419 389403 700722 336619 158801 044684 / 1072 032675 663595 149019 556086 689047 982002 296477 532875 566121 > 377 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3212, 364, F3, 133) (dual of [364, 152, 134]-code) | [i] | Truncation | |
2 | No linear OA(3213, 365, F3, 134) (dual of [365, 152, 135]-code) | [i] | ||
3 | No linear OOA(3212, 363, F3, 2, 133) (dual of [(363, 2), 514, 134]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3213, 363, F3, 2, 134) (dual of [(363, 2), 513, 135]-NRT-code) | [i] | ||
5 | No linear OOA(3211, 363, F3, 2, 132) (dual of [(363, 2), 515, 133]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3211, 363, F3, 3, 132) (dual of [(363, 3), 878, 133]-NRT-code) | [i] | ||
7 | No linear OOA(3211, 363, F3, 4, 132) (dual of [(363, 4), 1241, 133]-NRT-code) | [i] | ||
8 | No linear OOA(3211, 363, F3, 5, 132) (dual of [(363, 5), 1604, 133]-NRT-code) | [i] | ||
9 | No digital (79, 211, 363)-net over F3 | [i] | Extracting Embedded Orthogonal Array |