Information on Result #546863
There is no linear OA(3214, 352, F3, 135) (dual of [352, 138, 136]-code), because residual code would yield OA(379, 216, S3, 45), but
- 3 times truncation [i] would yield OA(376, 213, S3, 42), but
- the linear programming bound shows that M ≥ 24139 354386 854363 147378 476124 618112 504428 827791 667688 382538 767752 602863 057296 834401 801307 804700 / 12846 980782 406505 841743 696059 469546 157683 736221 588601 551817 > 376 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3215, 353, F3, 136) (dual of [353, 138, 137]-code) | [i] | Truncation | |
2 | No linear OA(3216, 354, F3, 137) (dual of [354, 138, 138]-code) | [i] | ||
3 | No linear OOA(3215, 352, F3, 2, 136) (dual of [(352, 2), 489, 137]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3216, 352, F3, 2, 137) (dual of [(352, 2), 488, 138]-NRT-code) | [i] | ||
5 | No linear OOA(3214, 352, F3, 2, 135) (dual of [(352, 2), 490, 136]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3214, 352, F3, 3, 135) (dual of [(352, 3), 842, 136]-NRT-code) | [i] | ||
7 | No linear OOA(3214, 352, F3, 4, 135) (dual of [(352, 4), 1194, 136]-NRT-code) | [i] | ||
8 | No linear OOA(3214, 352, F3, 5, 135) (dual of [(352, 5), 1546, 136]-NRT-code) | [i] | ||
9 | No digital (79, 214, 352)-net over F3 | [i] | Extracting Embedded Orthogonal Array |