Information on Result #546864
There is no linear OA(3215, 367, F3, 135) (dual of [367, 152, 136]-code), because residual code would yield OA(380, 231, S3, 45), but
- 3 times truncation [i] would yield OA(377, 228, S3, 42), but
- the linear programming bound shows that M ≥ 5912 215514 524704 110906 945136 883000 212719 987869 884535 855049 744419 389403 700722 336619 158801 044684 / 1072 032675 663595 149019 556086 689047 982002 296477 532875 566121 > 377 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3216, 368, F3, 136) (dual of [368, 152, 137]-code) | [i] | Truncation | |
2 | No linear OA(3217, 369, F3, 137) (dual of [369, 152, 138]-code) | [i] | ||
3 | No linear OOA(3216, 367, F3, 2, 136) (dual of [(367, 2), 518, 137]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3217, 367, F3, 2, 137) (dual of [(367, 2), 517, 138]-NRT-code) | [i] | ||
5 | No linear OOA(3215, 367, F3, 2, 135) (dual of [(367, 2), 519, 136]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3215, 367, F3, 3, 135) (dual of [(367, 3), 886, 136]-NRT-code) | [i] | ||
7 | No linear OOA(3215, 367, F3, 4, 135) (dual of [(367, 4), 1253, 136]-NRT-code) | [i] | ||
8 | No linear OOA(3215, 367, F3, 5, 135) (dual of [(367, 5), 1620, 136]-NRT-code) | [i] | ||
9 | No digital (80, 215, 367)-net over F3 | [i] | Extracting Embedded Orthogonal Array |