Information on Result #546913
There is no linear OA(3220, 338, F3, 141) (dual of [338, 118, 142]-code), because residual code would yield OA(379, 196, S3, 47), but
- 5 times truncation [i] would yield OA(374, 191, S3, 42), but
- the linear programming bound shows that M ≥ 7425 373872 326041 246958 413277 162396 664697 868093 270451 580073 051722 485491 109207 030427 537458 984375 / 32911 891840 780579 755648 777011 603243 208306 897748 202179 983781 > 374 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3221, 339, F3, 142) (dual of [339, 118, 143]-code) | [i] | Truncation | |
2 | No linear OA(3222, 340, F3, 143) (dual of [340, 118, 144]-code) | [i] | ||
3 | No linear OOA(3221, 338, F3, 2, 142) (dual of [(338, 2), 455, 143]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3222, 338, F3, 2, 143) (dual of [(338, 2), 454, 144]-NRT-code) | [i] | ||
5 | No linear OOA(3220, 338, F3, 2, 141) (dual of [(338, 2), 456, 142]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3220, 338, F3, 3, 141) (dual of [(338, 3), 794, 142]-NRT-code) | [i] | ||
7 | No linear OOA(3220, 338, F3, 4, 141) (dual of [(338, 4), 1132, 142]-NRT-code) | [i] | ||
8 | No linear OOA(3220, 338, F3, 5, 141) (dual of [(338, 5), 1470, 142]-NRT-code) | [i] | ||
9 | No digital (79, 220, 338)-net over F3 | [i] | Extracting Embedded Orthogonal Array |