Information on Result #546915
There is no linear OA(3222, 360, F3, 141) (dual of [360, 138, 142]-code), because residual code would yield OA(381, 218, S3, 47), but
- 5 times truncation [i] would yield OA(376, 213, S3, 42), but
- the linear programming bound shows that M ≥ 24139 354386 854363 147378 476124 618112 504428 827791 667688 382538 767752 602863 057296 834401 801307 804700 / 12846 980782 406505 841743 696059 469546 157683 736221 588601 551817 > 376 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3223, 361, F3, 142) (dual of [361, 138, 143]-code) | [i] | Truncation | |
2 | No linear OA(3224, 362, F3, 143) (dual of [362, 138, 144]-code) | [i] | ||
3 | No linear OOA(3223, 360, F3, 2, 142) (dual of [(360, 2), 497, 143]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3224, 360, F3, 2, 143) (dual of [(360, 2), 496, 144]-NRT-code) | [i] | ||
5 | No linear OOA(3222, 360, F3, 2, 141) (dual of [(360, 2), 498, 142]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3222, 360, F3, 3, 141) (dual of [(360, 3), 858, 142]-NRT-code) | [i] | ||
7 | No linear OOA(3222, 360, F3, 4, 141) (dual of [(360, 4), 1218, 142]-NRT-code) | [i] | ||
8 | No linear OOA(3222, 360, F3, 5, 141) (dual of [(360, 5), 1578, 142]-NRT-code) | [i] | ||
9 | No digital (81, 222, 360)-net over F3 | [i] | Extracting Embedded Orthogonal Array |