Information on Result #546935
There is no linear OA(3220, 252, F3, 144) (dual of [252, 32, 145]-code), because residual code would yield OA(376, 107, S3, 48), but
- the linear programming bound shows that M ≥ 27 003968 830416 865455 276739 924618 574996 266949 412970 132407 / 13 107822 838017 985847 > 376 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3221, 253, F3, 145) (dual of [253, 32, 146]-code) | [i] | Truncation | |
2 | No linear OA(3222, 254, F3, 146) (dual of [254, 32, 147]-code) | [i] | ||
3 | No linear OOA(3221, 252, F3, 2, 145) (dual of [(252, 2), 283, 146]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3222, 252, F3, 2, 146) (dual of [(252, 2), 282, 147]-NRT-code) | [i] | ||
5 | No linear OOA(3220, 252, F3, 2, 144) (dual of [(252, 2), 284, 145]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3220, 252, F3, 3, 144) (dual of [(252, 3), 536, 145]-NRT-code) | [i] | ||
7 | No linear OOA(3220, 252, F3, 4, 144) (dual of [(252, 4), 788, 145]-NRT-code) | [i] | ||
8 | No linear OOA(3220, 252, F3, 5, 144) (dual of [(252, 5), 1040, 145]-NRT-code) | [i] | ||
9 | No digital (76, 220, 252)-net over F3 | [i] | Extracting Embedded Orthogonal Array |