Information on Result #546966
There is no linear OA(3227, 281, F3, 147) (dual of [281, 54, 148]-code), because residual code would yield OA(380, 133, S3, 49), but
- the linear programming bound shows that M ≥ 21223 654940 747716 870153 549604 409912 091138 635334 644884 306688 767122 427377 344322 374868 328420 535820 061178 192292 178417 467677 / 142 600278 894934 337416 159250 039930 631375 413133 442674 819708 793351 208507 551154 176000 > 380 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3228, 282, F3, 148) (dual of [282, 54, 149]-code) | [i] | Truncation | |
2 | No linear OA(3229, 283, F3, 149) (dual of [283, 54, 150]-code) | [i] | ||
3 | No linear OOA(3228, 281, F3, 2, 148) (dual of [(281, 2), 334, 149]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3229, 281, F3, 2, 149) (dual of [(281, 2), 333, 150]-NRT-code) | [i] | ||
5 | No linear OOA(3227, 281, F3, 2, 147) (dual of [(281, 2), 335, 148]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3227, 281, F3, 3, 147) (dual of [(281, 3), 616, 148]-NRT-code) | [i] | ||
7 | No linear OOA(3227, 281, F3, 4, 147) (dual of [(281, 4), 897, 148]-NRT-code) | [i] | ||
8 | No linear OOA(3227, 281, F3, 5, 147) (dual of [(281, 5), 1178, 148]-NRT-code) | [i] | ||
9 | No digital (80, 227, 281)-net over F3 | [i] | Extracting Embedded Orthogonal Array |