Information on Result #546992
There is no linear OA(3229, 259, F3, 150) (dual of [259, 30, 151]-code), because residual code would yield OA(379, 108, S3, 50), but
- the linear programming bound shows that M ≥ 17 534511 337853 558668 492502 167227 612507 359380 469822 536899 / 298348 310384 556250 > 379 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3230, 260, F3, 151) (dual of [260, 30, 152]-code) | [i] | Truncation | |
2 | No linear OA(3231, 261, F3, 152) (dual of [261, 30, 153]-code) | [i] | ||
3 | No linear OOA(3230, 259, F3, 2, 151) (dual of [(259, 2), 288, 152]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3231, 259, F3, 2, 152) (dual of [(259, 2), 287, 153]-NRT-code) | [i] | ||
5 | No linear OOA(3229, 259, F3, 2, 150) (dual of [(259, 2), 289, 151]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3229, 259, F3, 3, 150) (dual of [(259, 3), 548, 151]-NRT-code) | [i] | ||
7 | No linear OOA(3229, 259, F3, 4, 150) (dual of [(259, 4), 807, 151]-NRT-code) | [i] | ||
8 | No linear OOA(3229, 259, F3, 5, 150) (dual of [(259, 5), 1066, 151]-NRT-code) | [i] | ||
9 | No digital (79, 229, 259)-net over F3 | [i] | Extracting Embedded Orthogonal Array |