Information on Result #546998
There is no linear OA(3235, 371, F3, 150) (dual of [371, 136, 151]-code), because residual code would yield linear OA(385, 220, F3, 50) (dual of [220, 135, 51]-code), but
- the Johnson bound shows that N ≤ 22905 993227 448745 319194 488151 012424 723463 351500 755461 393112 800141 < 3135 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3236, 372, F3, 151) (dual of [372, 136, 152]-code) | [i] | Truncation | |
2 | No linear OA(3237, 373, F3, 152) (dual of [373, 136, 153]-code) | [i] | ||
3 | No linear OOA(3236, 371, F3, 2, 151) (dual of [(371, 2), 506, 152]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3237, 371, F3, 2, 152) (dual of [(371, 2), 505, 153]-NRT-code) | [i] | ||
5 | No linear OOA(3235, 371, F3, 2, 150) (dual of [(371, 2), 507, 151]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3235, 371, F3, 3, 150) (dual of [(371, 3), 878, 151]-NRT-code) | [i] | ||
7 | No linear OOA(3235, 371, F3, 4, 150) (dual of [(371, 4), 1249, 151]-NRT-code) | [i] | ||
8 | No linear OOA(3235, 371, F3, 5, 150) (dual of [(371, 5), 1620, 151]-NRT-code) | [i] | ||
9 | No digital (85, 235, 371)-net over F3 | [i] | Extracting Embedded Orthogonal Array |