Information on Result #547020
There is no linear OA(3233, 259, F3, 153) (dual of [259, 26, 154]-code), because residual code would yield OA(380, 105, S3, 51), but
- the linear programming bound shows that M ≥ 19 616630 525054 787027 648895 210370 192777 110899 155889 / 122567 513497 > 380 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3234, 260, F3, 154) (dual of [260, 26, 155]-code) | [i] | Truncation | |
2 | No linear OA(3235, 261, F3, 155) (dual of [261, 26, 156]-code) | [i] | ||
3 | No linear OOA(3234, 259, F3, 2, 154) (dual of [(259, 2), 284, 155]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3235, 259, F3, 2, 155) (dual of [(259, 2), 283, 156]-NRT-code) | [i] | ||
5 | No linear OOA(3233, 259, F3, 2, 153) (dual of [(259, 2), 285, 154]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3233, 259, F3, 3, 153) (dual of [(259, 3), 544, 154]-NRT-code) | [i] | ||
7 | No linear OOA(3233, 259, F3, 4, 153) (dual of [(259, 4), 803, 154]-NRT-code) | [i] | ||
8 | No linear OOA(3233, 259, F3, 5, 153) (dual of [(259, 5), 1062, 154]-NRT-code) | [i] | ||
9 | No digital (80, 233, 259)-net over F3 | [i] | Extracting Embedded Orthogonal Array |