Information on Result #547022
There is no linear OA(3235, 276, F3, 153) (dual of [276, 41, 154]-code), because residual code would yield OA(382, 122, S3, 51), but
- the linear programming bound shows that M ≥ 2 857259 335023 875460 783166 319642 601001 954259 886029 570784 083010 116237 359893 / 2097 368232 043591 449722 787486 700000 > 382 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3236, 277, F3, 154) (dual of [277, 41, 155]-code) | [i] | Truncation | |
2 | No linear OA(3237, 278, F3, 155) (dual of [278, 41, 156]-code) | [i] | ||
3 | No linear OOA(3236, 276, F3, 2, 154) (dual of [(276, 2), 316, 155]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3237, 276, F3, 2, 155) (dual of [(276, 2), 315, 156]-NRT-code) | [i] | ||
5 | No linear OOA(3235, 276, F3, 2, 153) (dual of [(276, 2), 317, 154]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3235, 276, F3, 3, 153) (dual of [(276, 3), 593, 154]-NRT-code) | [i] | ||
7 | No linear OOA(3235, 276, F3, 4, 153) (dual of [(276, 4), 869, 154]-NRT-code) | [i] | ||
8 | No linear OOA(3235, 276, F3, 5, 153) (dual of [(276, 5), 1145, 154]-NRT-code) | [i] | ||
9 | No digital (82, 235, 276)-net over F3 | [i] | Extracting Embedded Orthogonal Array |