Information on Result #547023
There is no linear OA(3236, 288, F3, 153) (dual of [288, 52, 154]-code), because residual code would yield OA(383, 134, S3, 51), but
- the linear programming bound shows that M ≥ 625760 414962 993510 058854 039475 945995 304619 276439 915262 016003 058873 437945 073915 147163 250093 / 135 349071 693745 981183 738057 225151 833299 159482 850560 > 383 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3237, 289, F3, 154) (dual of [289, 52, 155]-code) | [i] | Truncation | |
2 | No linear OA(3238, 290, F3, 155) (dual of [290, 52, 156]-code) | [i] | ||
3 | No linear OOA(3237, 288, F3, 2, 154) (dual of [(288, 2), 339, 155]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3238, 288, F3, 2, 155) (dual of [(288, 2), 338, 156]-NRT-code) | [i] | ||
5 | No linear OOA(3236, 288, F3, 2, 153) (dual of [(288, 2), 340, 154]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3236, 288, F3, 3, 153) (dual of [(288, 3), 628, 154]-NRT-code) | [i] | ||
7 | No linear OOA(3236, 288, F3, 4, 153) (dual of [(288, 4), 916, 154]-NRT-code) | [i] | ||
8 | No linear OOA(3236, 288, F3, 5, 153) (dual of [(288, 5), 1204, 154]-NRT-code) | [i] | ||
9 | No digital (83, 236, 288)-net over F3 | [i] | Extracting Embedded Orthogonal Array |