Information on Result #547025
There is no linear OA(3238, 366, F3, 153) (dual of [366, 128, 154]-code), because residual code would yield linear OA(385, 212, F3, 51) (dual of [212, 127, 52]-code), but
- 1 times truncation [i] would yield linear OA(384, 211, F3, 50) (dual of [211, 127, 51]-code), but
- the Johnson bound shows that N ≤ 3 465392 580935 096296 712977 980638 603324 843243 174078 085715 358657 < 3127 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3239, 367, F3, 154) (dual of [367, 128, 155]-code) | [i] | Truncation | |
2 | No linear OA(3240, 368, F3, 155) (dual of [368, 128, 156]-code) | [i] | ||
3 | No linear OOA(3239, 366, F3, 2, 154) (dual of [(366, 2), 493, 155]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3240, 366, F3, 2, 155) (dual of [(366, 2), 492, 156]-NRT-code) | [i] | ||
5 | No linear OOA(3238, 366, F3, 2, 153) (dual of [(366, 2), 494, 154]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3238, 366, F3, 3, 153) (dual of [(366, 3), 860, 154]-NRT-code) | [i] | ||
7 | No linear OOA(3238, 366, F3, 4, 153) (dual of [(366, 4), 1226, 154]-NRT-code) | [i] | ||
8 | No linear OOA(3238, 366, F3, 5, 153) (dual of [(366, 5), 1592, 154]-NRT-code) | [i] | ||
9 | No digital (85, 238, 366)-net over F3 | [i] | Extracting Embedded Orthogonal Array |