Information on Result #547045
There is no linear OA(3238, 267, F3, 156) (dual of [267, 29, 157]-code), because residual code would yield OA(382, 110, S3, 52), but
- the linear programming bound shows that M ≥ 36 916814 627242 513115 313210 304023 547918 724700 246946 892256 / 26125 454924 406409 > 382 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3239, 268, F3, 157) (dual of [268, 29, 158]-code) | [i] | Truncation | |
2 | No linear OA(3240, 269, F3, 158) (dual of [269, 29, 159]-code) | [i] | ||
3 | No linear OOA(3239, 267, F3, 2, 157) (dual of [(267, 2), 295, 158]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3240, 267, F3, 2, 158) (dual of [(267, 2), 294, 159]-NRT-code) | [i] | ||
5 | No linear OOA(3238, 267, F3, 2, 156) (dual of [(267, 2), 296, 157]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3238, 267, F3, 3, 156) (dual of [(267, 3), 563, 157]-NRT-code) | [i] | ||
7 | No linear OOA(3238, 267, F3, 4, 156) (dual of [(267, 4), 830, 157]-NRT-code) | [i] | ||
8 | No linear OOA(3238, 267, F3, 5, 156) (dual of [(267, 5), 1097, 157]-NRT-code) | [i] | ||
9 | No digital (82, 238, 267)-net over F3 | [i] | Extracting Embedded Orthogonal Array |