Information on Result #547054
There is no linear OA(3247, 410, F3, 156) (dual of [410, 163, 157]-code), because residual code would yield linear OA(391, 253, F3, 52) (dual of [253, 162, 53]-code), but
- the Johnson bound shows that N ≤ 179351 448037 571926 665032 504132 411079 734421 634873 676547 341483 836618 815717 643951 < 3162 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3248, 411, F3, 157) (dual of [411, 163, 158]-code) | [i] | Truncation | |
2 | No linear OA(3249, 412, F3, 158) (dual of [412, 163, 159]-code) | [i] | ||
3 | No linear OOA(3248, 410, F3, 2, 157) (dual of [(410, 2), 572, 158]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3249, 410, F3, 2, 158) (dual of [(410, 2), 571, 159]-NRT-code) | [i] | ||
5 | No linear OOA(3247, 410, F3, 2, 156) (dual of [(410, 2), 573, 157]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3247, 410, F3, 3, 156) (dual of [(410, 3), 983, 157]-NRT-code) | [i] | ||
7 | No linear OOA(3247, 410, F3, 4, 156) (dual of [(410, 4), 1393, 157]-NRT-code) | [i] | ||
8 | No linear OOA(3247, 410, F3, 5, 156) (dual of [(410, 5), 1803, 157]-NRT-code) | [i] | ||
9 | No digital (91, 247, 410)-net over F3 | [i] | Extracting Embedded Orthogonal Array |