Information on Result #547079
There is no linear OA(3247, 274, F3, 162) (dual of [274, 27, 163]-code), because residual code would yield OA(385, 111, S3, 54), but
- the linear programming bound shows that M ≥ 171 512814 450641 798610 864431 673363 023574 527618 893419 348639 / 4028 884726 616750 > 385 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3248, 275, F3, 163) (dual of [275, 27, 164]-code) | [i] | Truncation | |
2 | No linear OA(3249, 276, F3, 164) (dual of [276, 27, 165]-code) | [i] | ||
3 | No linear OOA(3248, 274, F3, 2, 163) (dual of [(274, 2), 300, 164]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3249, 274, F3, 2, 164) (dual of [(274, 2), 299, 165]-NRT-code) | [i] | ||
5 | No linear OOA(3247, 274, F3, 2, 162) (dual of [(274, 2), 301, 163]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3247, 274, F3, 3, 162) (dual of [(274, 3), 575, 163]-NRT-code) | [i] | ||
7 | No linear OOA(3247, 274, F3, 4, 162) (dual of [(274, 4), 849, 163]-NRT-code) | [i] | ||
8 | No linear OOA(3247, 274, F3, 5, 162) (dual of [(274, 5), 1123, 163]-NRT-code) | [i] | ||
9 | No digital (85, 247, 274)-net over F3 | [i] | Extracting Embedded Orthogonal Array |