Information on Result #547081
There is no linear OA(3249, 291, F3, 162) (dual of [291, 42, 163]-code), because residual code would yield OA(387, 128, S3, 54), but
- the linear programming bound shows that M ≥ 15 952594 360793 907733 534555 089919 080786 131778 937341 232963 389196 637855 190777 / 46 108516 281082 645734 227925 699658 > 387 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3250, 292, F3, 163) (dual of [292, 42, 164]-code) | [i] | Truncation | |
2 | No linear OOA(3250, 291, F3, 2, 163) (dual of [(291, 2), 332, 164]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(3249, 291, F3, 2, 162) (dual of [(291, 2), 333, 163]-NRT-code) | [i] | Depth Reduction | |
4 | No linear OOA(3249, 291, F3, 3, 162) (dual of [(291, 3), 624, 163]-NRT-code) | [i] | ||
5 | No linear OOA(3249, 291, F3, 4, 162) (dual of [(291, 4), 915, 163]-NRT-code) | [i] | ||
6 | No linear OOA(3249, 291, F3, 5, 162) (dual of [(291, 5), 1206, 163]-NRT-code) | [i] | ||
7 | No digital (87, 249, 291)-net over F3 | [i] | Extracting Embedded Orthogonal Array |