Information on Result #547123
There is no linear OA(4135, 261, F4, 96) (dual of [261, 126, 97]-code), because residual code would yield OA(439, 164, S4, 24), but
- the linear programming bound shows that M ≥ 253 017119 292002 552737 316772 682392 509261 807616 / 821 395315 909793 005123 > 439 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4136, 262, F4, 97) (dual of [262, 126, 98]-code) | [i] | Truncation | |
2 | No linear OA(4137, 263, F4, 98) (dual of [263, 126, 99]-code) | [i] | ||
3 | No linear OA(4138, 264, F4, 99) (dual of [264, 126, 100]-code) | [i] | ||
4 | No linear OOA(4136, 261, F4, 2, 97) (dual of [(261, 2), 386, 98]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4137, 261, F4, 2, 98) (dual of [(261, 2), 385, 99]-NRT-code) | [i] | ||
6 | No linear OOA(4138, 261, F4, 2, 99) (dual of [(261, 2), 384, 100]-NRT-code) | [i] | ||
7 | No linear OOA(4135, 261, F4, 2, 96) (dual of [(261, 2), 387, 97]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4135, 261, F4, 3, 96) (dual of [(261, 3), 648, 97]-NRT-code) | [i] | ||
9 | No digital (39, 135, 261)-net over F4 | [i] | Extracting Embedded Orthogonal Array |