Information on Result #547137
There is no linear OA(4146, 277, F4, 104) (dual of [277, 131, 105]-code), because residual code would yield OA(442, 172, S4, 26), but
- the linear programming bound shows that M ≥ 34 487674 602431 075505 978819 529968 455340 679044 792320 / 1 686703 652728 844301 656717 > 442 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4147, 278, F4, 105) (dual of [278, 131, 106]-code) | [i] | Truncation | |
2 | No linear OA(4148, 279, F4, 106) (dual of [279, 131, 107]-code) | [i] | ||
3 | No linear OA(4149, 280, F4, 107) (dual of [280, 131, 108]-code) | [i] | ||
4 | No linear OOA(4147, 277, F4, 2, 105) (dual of [(277, 2), 407, 106]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4148, 277, F4, 2, 106) (dual of [(277, 2), 406, 107]-NRT-code) | [i] | ||
6 | No linear OOA(4149, 277, F4, 2, 107) (dual of [(277, 2), 405, 108]-NRT-code) | [i] | ||
7 | No linear OOA(4146, 277, F4, 2, 104) (dual of [(277, 2), 408, 105]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4146, 277, F4, 3, 104) (dual of [(277, 3), 685, 105]-NRT-code) | [i] | ||
9 | No digital (42, 146, 277)-net over F4 | [i] | Extracting Embedded Orthogonal Array |