Information on Result #547154
There is no linear OA(4156, 275, F4, 112) (dual of [275, 119, 113]-code), because residual code would yield OA(444, 162, S4, 28), but
- the linear programming bound shows that M ≥ 69649 289710 882486 539188 729039 118872 574721 050141 523968 / 222 535516 159810 724394 190313 > 444 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4157, 276, F4, 113) (dual of [276, 119, 114]-code) | [i] | Truncation | |
2 | No linear OA(4158, 277, F4, 114) (dual of [277, 119, 115]-code) | [i] | ||
3 | No linear OA(4159, 278, F4, 115) (dual of [278, 119, 116]-code) | [i] | ||
4 | No linear OOA(4157, 275, F4, 2, 113) (dual of [(275, 2), 393, 114]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4158, 275, F4, 2, 114) (dual of [(275, 2), 392, 115]-NRT-code) | [i] | ||
6 | No linear OOA(4159, 275, F4, 2, 115) (dual of [(275, 2), 391, 116]-NRT-code) | [i] | ||
7 | No linear OOA(4156, 275, F4, 2, 112) (dual of [(275, 2), 394, 113]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4156, 275, F4, 3, 112) (dual of [(275, 3), 669, 113]-NRT-code) | [i] | ||
9 | No digital (44, 156, 275)-net over F4 | [i] | Extracting Embedded Orthogonal Array |