Information on Result #547184
There is no linear OA(4171, 267, F4, 124) (dual of [267, 96, 125]-code), because residual code would yield OA(447, 142, S4, 31), but
- the linear programming bound shows that M ≥ 1 426879 798802 733246 761115 948298 486619 667897 205821 276160 000000 / 71 943480 328984 731362 301117 226363 > 447 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4172, 268, F4, 125) (dual of [268, 96, 126]-code) | [i] | Truncation | |
2 | No linear OA(4173, 269, F4, 126) (dual of [269, 96, 127]-code) | [i] | ||
3 | No linear OA(4174, 270, F4, 127) (dual of [270, 96, 128]-code) | [i] | ||
4 | No linear OOA(4172, 267, F4, 2, 125) (dual of [(267, 2), 362, 126]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4173, 267, F4, 2, 126) (dual of [(267, 2), 361, 127]-NRT-code) | [i] | ||
6 | No linear OOA(4174, 267, F4, 2, 127) (dual of [(267, 2), 360, 128]-NRT-code) | [i] | ||
7 | No linear OOA(4171, 267, F4, 2, 124) (dual of [(267, 2), 363, 125]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4171, 267, F4, 3, 124) (dual of [(267, 3), 630, 125]-NRT-code) | [i] | ||
9 | No digital (47, 171, 267)-net over F4 | [i] | Extracting Embedded Orthogonal Array |