Information on Result #547204

There is no linear OA(4178, 222, F4, 132) (dual of [222, 44, 133]-code), because residual code would yield OA(446, 89, S4, 33), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(4179, 223, F4, 133) (dual of [223, 44, 134]-code) [i]Truncation
2No linear OA(4180, 224, F4, 134) (dual of [224, 44, 135]-code) [i]
3No linear OA(4181, 225, F4, 135) (dual of [225, 44, 136]-code) [i]
4No linear OOA(4179, 222, F4, 2, 133) (dual of [(222, 2), 265, 134]-NRT-code) [i]m-Reduction for OOAs
5No linear OOA(4180, 222, F4, 2, 134) (dual of [(222, 2), 264, 135]-NRT-code) [i]
6No linear OOA(4181, 222, F4, 2, 135) (dual of [(222, 2), 263, 136]-NRT-code) [i]
7No linear OOA(4178, 222, F4, 2, 132) (dual of [(222, 2), 266, 133]-NRT-code) [i]Depth Reduction
8No linear OOA(4178, 222, F4, 3, 132) (dual of [(222, 3), 488, 133]-NRT-code) [i]
9No digital (46, 178, 222)-net over F4 [i]Extracting Embedded Orthogonal Array