Information on Result #547208
There is no linear OA(4182, 283, F4, 132) (dual of [283, 101, 133]-code), because residual code would yield OA(450, 150, S4, 33), but
- the linear programming bound shows that M ≥ 5 240119 176987 495175 938332 339957 317207 114465 129158 080255 058824 396800 / 3 814088 610970 960406 001299 094550 500367 > 450 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4183, 284, F4, 133) (dual of [284, 101, 134]-code) | [i] | Truncation | |
2 | No linear OA(4184, 285, F4, 134) (dual of [285, 101, 135]-code) | [i] | ||
3 | No linear OA(4185, 286, F4, 135) (dual of [286, 101, 136]-code) | [i] | ||
4 | No linear OOA(4183, 283, F4, 2, 133) (dual of [(283, 2), 383, 134]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4184, 283, F4, 2, 134) (dual of [(283, 2), 382, 135]-NRT-code) | [i] | ||
6 | No linear OOA(4185, 283, F4, 2, 135) (dual of [(283, 2), 381, 136]-NRT-code) | [i] | ||
7 | No linear OOA(4182, 283, F4, 2, 132) (dual of [(283, 2), 384, 133]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4182, 283, F4, 3, 132) (dual of [(283, 3), 667, 133]-NRT-code) | [i] | ||
9 | No digital (50, 182, 283)-net over F4 | [i] | Extracting Embedded Orthogonal Array |