Information on Result #547224
There is no linear OA(4188, 295, F4, 136) (dual of [295, 107, 137]-code), because residual code would yield OA(452, 158, S4, 34), but
- the linear programming bound shows that M ≥ 469 172424 648636 045767 766815 849214 505759 765861 829911 248896 000000 / 22 532998 783661 073340 993241 522503 > 452 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4189, 296, F4, 137) (dual of [296, 107, 138]-code) | [i] | Truncation | |
2 | No linear OA(4190, 297, F4, 138) (dual of [297, 107, 139]-code) | [i] | ||
3 | No linear OA(4191, 298, F4, 139) (dual of [298, 107, 140]-code) | [i] | ||
4 | No linear OOA(4189, 295, F4, 2, 137) (dual of [(295, 2), 401, 138]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4190, 295, F4, 2, 138) (dual of [(295, 2), 400, 139]-NRT-code) | [i] | ||
6 | No linear OOA(4191, 295, F4, 2, 139) (dual of [(295, 2), 399, 140]-NRT-code) | [i] | ||
7 | No linear OOA(4188, 295, F4, 2, 136) (dual of [(295, 2), 402, 137]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4188, 295, F4, 3, 136) (dual of [(295, 3), 697, 137]-NRT-code) | [i] | ||
9 | No digital (52, 188, 295)-net over F4 | [i] | Extracting Embedded Orthogonal Array |