Information on Result #547243
There is no linear OA(4195, 327, F4, 140) (dual of [327, 132, 141]-code), because residual code would yield OA(455, 186, S4, 35), but
- the linear programming bound shows that M ≥ 2227 845699 810146 058122 102603 602007 534656 013828 852609 458125 647380 480000 / 1 700436 329479 757404 993871 394563 863537 > 455 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4196, 328, F4, 141) (dual of [328, 132, 142]-code) | [i] | Truncation | |
2 | No linear OA(4197, 329, F4, 142) (dual of [329, 132, 143]-code) | [i] | ||
3 | No linear OA(4198, 330, F4, 143) (dual of [330, 132, 144]-code) | [i] | ||
4 | No linear OOA(4196, 327, F4, 2, 141) (dual of [(327, 2), 458, 142]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4197, 327, F4, 2, 142) (dual of [(327, 2), 457, 143]-NRT-code) | [i] | ||
6 | No linear OOA(4198, 327, F4, 2, 143) (dual of [(327, 2), 456, 144]-NRT-code) | [i] | ||
7 | No linear OOA(4195, 327, F4, 2, 140) (dual of [(327, 2), 459, 141]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4195, 327, F4, 3, 140) (dual of [(327, 3), 786, 141]-NRT-code) | [i] | ||
9 | No digital (55, 195, 327)-net over F4 | [i] | Extracting Embedded Orthogonal Array |