Information on Result #547404
There is no linear OA(4232, 270, F4, 172) (dual of [270, 38, 173]-code), because residual code would yield OA(460, 97, S4, 43), but
- the linear programming bound shows that M ≥ 397 009202 024702 523768 652504 484945 932069 120818 488153 315427 343594 355263 799296 / 269 558632 232160 195053 526197 508114 230285 > 460 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4233, 271, F4, 173) (dual of [271, 38, 174]-code) | [i] | Truncation | |
2 | No linear OA(4234, 272, F4, 174) (dual of [272, 38, 175]-code) | [i] | ||
3 | No linear OA(4235, 273, F4, 175) (dual of [273, 38, 176]-code) | [i] | ||
4 | No linear OOA(4233, 270, F4, 2, 173) (dual of [(270, 2), 307, 174]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4234, 270, F4, 2, 174) (dual of [(270, 2), 306, 175]-NRT-code) | [i] | ||
6 | No linear OOA(4235, 270, F4, 2, 175) (dual of [(270, 2), 305, 176]-NRT-code) | [i] | ||
7 | No linear OOA(4232, 270, F4, 2, 172) (dual of [(270, 2), 308, 173]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4232, 270, F4, 3, 172) (dual of [(270, 3), 578, 173]-NRT-code) | [i] | ||
9 | No digital (60, 232, 270)-net over F4 | [i] | Extracting Embedded Orthogonal Array |