Information on Result #547491
There is no linear OA(4252, 271, F4, 188) (dual of [271, 19, 189]-code), because residual code would yield OA(464, 82, S4, 47), but
- the linear programming bound shows that M ≥ 42 906360 577844 236924 181238 144026 607595 077872 123904 / 112185 734375 > 464 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(4253, 272, F4, 189) (dual of [272, 19, 190]-code) | [i] | Truncation | |
2 | No linear OA(4254, 273, F4, 190) (dual of [273, 19, 191]-code) | [i] | ||
3 | No linear OA(4255, 274, F4, 191) (dual of [274, 19, 192]-code) | [i] | ||
4 | No linear OOA(4253, 271, F4, 2, 189) (dual of [(271, 2), 289, 190]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(4254, 271, F4, 2, 190) (dual of [(271, 2), 288, 191]-NRT-code) | [i] | ||
6 | No linear OOA(4255, 271, F4, 2, 191) (dual of [(271, 2), 287, 192]-NRT-code) | [i] | ||
7 | No linear OOA(4252, 271, F4, 2, 188) (dual of [(271, 2), 290, 189]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(4252, 271, F4, 3, 188) (dual of [(271, 3), 561, 189]-NRT-code) | [i] | ||
9 | No digital (64, 252, 271)-net over F4 | [i] | Extracting Embedded Orthogonal Array |