Information on Result #547499
There is no linear OA(4260, 396, F4, 188) (dual of [396, 136, 189]-code), because residual code would yield OA(472, 207, S4, 47), but
- 1 times truncation [i] would yield OA(471, 206, S4, 46), but
- the linear programming bound shows that M ≥ 12190 666552 860549 875030 280693 949215 033597 089167 787297 540990 306499 998443 349891 008938 804128 810849 723006 100908 802048 / 2095 122091 727468 263392 248874 603589 540011 988045 238608 933987 894642 253863 > 471 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(4260, 396, F4, 2, 188) (dual of [(396, 2), 532, 189]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(4260, 396, F4, 3, 188) (dual of [(396, 3), 928, 189]-NRT-code) | [i] | ||
3 | No digital (72, 260, 396)-net over F4 | [i] | Extracting Embedded Orthogonal Array |