Information on Result #547550
There is no linear OA(5147, 229, F5, 115) (dual of [229, 82, 116]-code), because residual code would yield OA(532, 113, S5, 23), but
- the linear programming bound shows that M ≥ 10 335469 858211 203627 319031 252193 450927 734375 000000 / 440 686191 472857 007507 695751 > 532 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(5148, 230, F5, 116) (dual of [230, 82, 117]-code) | [i] | Truncation | |
2 | No linear OA(5149, 231, F5, 117) (dual of [231, 82, 118]-code) | [i] | ||
3 | No linear OA(5150, 232, F5, 118) (dual of [232, 82, 119]-code) | [i] | ||
4 | No linear OOA(5148, 229, F5, 2, 116) (dual of [(229, 2), 310, 117]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(5149, 229, F5, 2, 117) (dual of [(229, 2), 309, 118]-NRT-code) | [i] | ||
6 | No linear OOA(5150, 229, F5, 2, 118) (dual of [(229, 2), 308, 119]-NRT-code) | [i] | ||
7 | No linear OOA(5147, 229, F5, 2, 115) (dual of [(229, 2), 311, 116]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(5147, 229, F5, 3, 115) (dual of [(229, 3), 540, 116]-NRT-code) | [i] | ||
9 | No digital (32, 147, 229)-net over F5 | [i] | Extracting Embedded Orthogonal Array |