Information on Result #547713

There is no linear OA(2231, 338, F2, 102) (dual of [338, 107, 103]-code), because construction Y1 would yield
  1. OA(2230, 298, S2, 102), but
    • the linear programming bound shows that M ≥ 28328 912148 849580 959168 649431 841394 936395 688011 110123 504172 235246 501853 118396 831712 245536 784384 / 14 303044 917261 608852 030375 > 2230 [i]
  2. linear OA(2107, 338, F2, 40) (dual of [338, 231, 41]-code), but
    • the Johnson bound shows that N ≤ 3434 053797 401679 986317 765579 691875 129001 910847 737754 657844 908527 981613 < 2231 [i]

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(2232, 339, F2, 103) (dual of [339, 107, 104]-code) [i]Truncation
2No linear OOA(2232, 338, F2, 2, 103) (dual of [(338, 2), 444, 104]-NRT-code) [i]m-Reduction for OOAs
3No linear OOA(2231, 338, F2, 2, 102) (dual of [(338, 2), 445, 103]-NRT-code) [i]Depth Reduction
4No linear OOA(2231, 338, F2, 3, 102) (dual of [(338, 3), 783, 103]-NRT-code) [i]
5No linear OOA(2231, 338, F2, 4, 102) (dual of [(338, 4), 1121, 103]-NRT-code) [i]
6No linear OOA(2231, 338, F2, 5, 102) (dual of [(338, 5), 1459, 103]-NRT-code) [i]
7No linear OOA(2231, 338, F2, 6, 102) (dual of [(338, 6), 1797, 103]-NRT-code) [i]
8No linear OOA(2231, 338, F2, 7, 102) (dual of [(338, 7), 2135, 103]-NRT-code) [i]
9No linear OOA(2231, 338, F2, 8, 102) (dual of [(338, 8), 2473, 103]-NRT-code) [i]
10No digital (129, 231, 338)-net over F2 [i]Extracting Embedded Orthogonal Array