Information on Result #547713
There is no linear OA(2231, 338, F2, 102) (dual of [338, 107, 103]-code), because construction Y1 would yield
- OA(2230, 298, S2, 102), but
- the linear programming bound shows that M ≥ 28328 912148 849580 959168 649431 841394 936395 688011 110123 504172 235246 501853 118396 831712 245536 784384 / 14 303044 917261 608852 030375 > 2230 [i]
- linear OA(2107, 338, F2, 40) (dual of [338, 231, 41]-code), but
- the Johnson bound shows that N ≤ 3434 053797 401679 986317 765579 691875 129001 910847 737754 657844 908527 981613 < 2231 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(2232, 339, F2, 103) (dual of [339, 107, 104]-code) | [i] | Truncation | |
2 | No linear OOA(2232, 338, F2, 2, 103) (dual of [(338, 2), 444, 104]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(2231, 338, F2, 2, 102) (dual of [(338, 2), 445, 103]-NRT-code) | [i] | Depth Reduction | |
4 | No linear OOA(2231, 338, F2, 3, 102) (dual of [(338, 3), 783, 103]-NRT-code) | [i] | ||
5 | No linear OOA(2231, 338, F2, 4, 102) (dual of [(338, 4), 1121, 103]-NRT-code) | [i] | ||
6 | No linear OOA(2231, 338, F2, 5, 102) (dual of [(338, 5), 1459, 103]-NRT-code) | [i] | ||
7 | No linear OOA(2231, 338, F2, 6, 102) (dual of [(338, 6), 1797, 103]-NRT-code) | [i] | ||
8 | No linear OOA(2231, 338, F2, 7, 102) (dual of [(338, 7), 2135, 103]-NRT-code) | [i] | ||
9 | No linear OOA(2231, 338, F2, 8, 102) (dual of [(338, 8), 2473, 103]-NRT-code) | [i] | ||
10 | No digital (129, 231, 338)-net over F2 | [i] | Extracting Embedded Orthogonal Array |