Information on Result #547762

There is no linear OA(3116, 197, F3, 72) (dual of [197, 81, 73]-code), because construction Y1 would yield
  1. OA(3115, 148, S3, 72), but
    • the linear programming bound shows that M ≥ 15138 532736 321222 240484 923894 686292 145850 190102 104613 028724 231594 313752 692357 / 1981 901463 555581 678825 > 3115 [i]
  2. OA(381, 197, S3, 49), but
    • discarding factors would yield OA(381, 145, S3, 49), but
      • the linear programming bound shows that M ≥ 5454 903125 674302 038138 022709 253118 870603 680604 996309 484668 631548 163854 828465 899522 845238 627953 731491 227462 708997 548509 054594 512076 840977 032054 473727 036116 069732 583516 742090 980902 781249 742853 019393 892253 960097 248495 972677 421373 426141 628074 366647 / 12 085062 732503 338992 176763 549129 519718 479110 268997 150451 737221 775723 050593 147904 271161 753240 445212 100862 734331 956180 467283 411940 172483 857447 041584 506698 884680 282731 811631 103778 314212 762058 997686 304963 565740 > 381 [i]

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(3116, 197, F3, 2, 72) (dual of [(197, 2), 278, 73]-NRT-code) [i]Depth Reduction
2No linear OOA(3116, 197, F3, 3, 72) (dual of [(197, 3), 475, 73]-NRT-code) [i]
3No linear OOA(3116, 197, F3, 4, 72) (dual of [(197, 4), 672, 73]-NRT-code) [i]
4No linear OOA(3116, 197, F3, 5, 72) (dual of [(197, 5), 869, 73]-NRT-code) [i]
5No digital (44, 116, 197)-net over F3 [i]Extracting Embedded Orthogonal Array
6No linear OA(3100, 216, F3, 61) (dual of [216, 116, 62]-code) [i]Construction Y1 (Bound)