Information on Result #547768
There is no linear OA(3123, 181, F3, 77) (dual of [181, 58, 78]-code), because construction Y1 would yield
- OA(3122, 149, S3, 77), but
- the linear programming bound shows that M ≥ 67434 342292 992288 376762 260349 832237 588555 472017 770451 259524 588149 412506 954917 / 4 116623 563914 383665 > 3122 [i]
- OA(358, 181, S3, 32), but
- discarding factors would yield OA(358, 173, S3, 32), but
- the linear programming bound shows that M ≥ 47 314229 835710 776345 670615 418214 790563 428291 670976 086718 521800 / 9965 095822 320687 546955 148607 190123 > 358 [i]
- discarding factors would yield OA(358, 173, S3, 32), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3123, 181, F3, 2, 77) (dual of [(181, 2), 239, 78]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3123, 181, F3, 3, 77) (dual of [(181, 3), 420, 78]-NRT-code) | [i] | ||
3 | No linear OOA(3123, 181, F3, 4, 77) (dual of [(181, 4), 601, 78]-NRT-code) | [i] | ||
4 | No linear OOA(3123, 181, F3, 5, 77) (dual of [(181, 5), 782, 78]-NRT-code) | [i] | ||
5 | No digital (46, 123, 181)-net over F3 | [i] | Extracting Embedded Orthogonal Array |