Information on Result #547769

There is no linear OA(3124, 176, F3, 78) (dual of [176, 52, 79]-code), because construction Y1 would yield
  1. OA(3123, 148, S3, 78), but
    • the linear programming bound shows that M ≥ 7 262897 028362 273678 472870 511072 492435 452301 893929 213302 547823 936352 413873 / 144 349303 060703 > 3123 [i]
  2. OA(352, 176, S3, 28), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(3124, 176, F3, 2, 78) (dual of [(176, 2), 228, 79]-NRT-code) [i]Depth Reduction
2No linear OOA(3124, 176, F3, 3, 78) (dual of [(176, 3), 404, 79]-NRT-code) [i]
3No linear OOA(3124, 176, F3, 4, 78) (dual of [(176, 4), 580, 79]-NRT-code) [i]
4No linear OOA(3124, 176, F3, 5, 78) (dual of [(176, 5), 756, 79]-NRT-code) [i]
5No digital (46, 124, 176)-net over F3 [i]Extracting Embedded Orthogonal Array