Information on Result #547775

There is no linear OA(3130, 169, F3, 83) (dual of [169, 39, 84]-code), because construction Y1 would yield
  1. OA(3129, 149, S3, 83), but
    • the linear programming bound shows that M ≥ 84 319128 221217 735495 636798 406504 571731 768077 225953 505729 024301 422296 511468 / 1 784703 172945 > 3129 [i]
  2. OA(339, 169, S3, 20), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(3130, 169, F3, 2, 83) (dual of [(169, 2), 208, 84]-NRT-code) [i]Depth Reduction
2No linear OOA(3130, 169, F3, 3, 83) (dual of [(169, 3), 377, 84]-NRT-code) [i]
3No linear OOA(3130, 169, F3, 4, 83) (dual of [(169, 4), 546, 84]-NRT-code) [i]
4No linear OOA(3130, 169, F3, 5, 83) (dual of [(169, 5), 715, 84]-NRT-code) [i]
5No digital (47, 130, 169)-net over F3 [i]Extracting Embedded Orthogonal Array
6No linear OA(3131, 228, F3, 83) (dual of [228, 97, 84]-code) [i]Construction Y1 (Bound)