Information on Result #547775
There is no linear OA(3130, 169, F3, 83) (dual of [169, 39, 84]-code), because construction Y1 would yield
- OA(3129, 149, S3, 83), but
- the linear programming bound shows that M ≥ 84 319128 221217 735495 636798 406504 571731 768077 225953 505729 024301 422296 511468 / 1 784703 172945 > 3129 [i]
- OA(339, 169, S3, 20), but
- the Rao or (dual) Hamming bound shows that M ≥ 4 219632 770903 631459 > 339 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3130, 169, F3, 2, 83) (dual of [(169, 2), 208, 84]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3130, 169, F3, 3, 83) (dual of [(169, 3), 377, 84]-NRT-code) | [i] | ||
3 | No linear OOA(3130, 169, F3, 4, 83) (dual of [(169, 4), 546, 84]-NRT-code) | [i] | ||
4 | No linear OOA(3130, 169, F3, 5, 83) (dual of [(169, 5), 715, 84]-NRT-code) | [i] | ||
5 | No digital (47, 130, 169)-net over F3 | [i] | Extracting Embedded Orthogonal Array | |
6 | No linear OA(3131, 228, F3, 83) (dual of [228, 97, 84]-code) | [i] | Construction Y1 (Bound) |