Information on Result #547776

There is no linear OA(3131, 163, F3, 84) (dual of [163, 32, 85]-code), because construction Y1 would yield
  1. OA(3130, 147, S3, 84), but
    • the linear programming bound shows that M ≥ 610951 874237 245179 799757 396293 504258 972145 948730 720728 290459 967541 402306 / 4917 657235 > 3130 [i]
  2. OA(332, 163, S3, 16), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(3131, 163, F3, 2, 84) (dual of [(163, 2), 195, 85]-NRT-code) [i]Depth Reduction
2No linear OOA(3131, 163, F3, 3, 84) (dual of [(163, 3), 358, 85]-NRT-code) [i]
3No linear OOA(3131, 163, F3, 4, 84) (dual of [(163, 4), 521, 85]-NRT-code) [i]
4No linear OOA(3131, 163, F3, 5, 84) (dual of [(163, 5), 684, 85]-NRT-code) [i]
5No digital (47, 131, 163)-net over F3 [i]Extracting Embedded Orthogonal Array
6No linear OA(3132, 202, F3, 84) (dual of [202, 70, 85]-code) [i]Construction Y1 (Bound)