Information on Result #547779

There is no linear OA(3132, 202, F3, 84) (dual of [202, 70, 85]-code), because construction Y1 would yield
  1. linear OA(3131, 163, F3, 84) (dual of [163, 32, 85]-code), but
  2. OA(370, 202, S3, 39), but
    • discarding factors would yield OA(370, 201, S3, 39), but
      • the linear programming bound shows that M ≥ 113 349189 137258 716153 960396 901943 653307 523624 962713 490500 568615 819372 696809 220000 000000 / 44072 627437 445072 457879 396444 067387 747385 068139 742293 > 370 [i]

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(3132, 202, F3, 2, 84) (dual of [(202, 2), 272, 85]-NRT-code) [i]Depth Reduction
2No linear OOA(3132, 202, F3, 3, 84) (dual of [(202, 3), 474, 85]-NRT-code) [i]
3No linear OOA(3132, 202, F3, 4, 84) (dual of [(202, 4), 676, 85]-NRT-code) [i]
4No linear OOA(3132, 202, F3, 5, 84) (dual of [(202, 5), 878, 85]-NRT-code) [i]
5No digital (48, 132, 202)-net over F3 [i]Extracting Embedded Orthogonal Array