Information on Result #547782

There is no linear OA(3134, 166, F3, 86) (dual of [166, 32, 87]-code), because construction Y1 would yield
  1. OA(3133, 150, S3, 86), but
    • the linear programming bound shows that M ≥ 10206 967808 467913 747808 389212 583004 511164 705253 854573 732746 285224 754829 / 2 832691 > 3133 [i]
  2. OA(332, 166, S3, 16), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(3134, 166, F3, 2, 86) (dual of [(166, 2), 198, 87]-NRT-code) [i]Depth Reduction
2No linear OOA(3134, 166, F3, 3, 86) (dual of [(166, 3), 364, 87]-NRT-code) [i]
3No linear OOA(3134, 166, F3, 4, 86) (dual of [(166, 4), 530, 87]-NRT-code) [i]
4No linear OOA(3134, 166, F3, 5, 86) (dual of [(166, 5), 696, 87]-NRT-code) [i]
5No digital (48, 134, 166)-net over F3 [i]Extracting Embedded Orthogonal Array
6No linear OA(3135, 204, F3, 86) (dual of [204, 69, 87]-code) [i]Construction Y1 (Bound)