Information on Result #547783

There is no linear OA(3135, 164, F3, 87) (dual of [164, 29, 88]-code), because construction Y1 would yield
  1. OA(3134, 150, S3, 87), but
    • the linear programming bound shows that M ≥ 1998 191076 053927 805178 143382 564872 985089 052204 487349 698881 740338 723055 870219 / 227413 116931 > 3134 [i]
  2. OA(329, 164, S3, 14), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(3136, 165, F3, 88) (dual of [165, 29, 89]-code) [i]Truncation
2No linear OOA(3136, 164, F3, 2, 88) (dual of [(164, 2), 192, 89]-NRT-code) [i]m-Reduction for OOAs
3No linear OOA(3135, 164, F3, 2, 87) (dual of [(164, 2), 193, 88]-NRT-code) [i]Depth Reduction
4No linear OOA(3135, 164, F3, 3, 87) (dual of [(164, 3), 357, 88]-NRT-code) [i]
5No linear OOA(3135, 164, F3, 4, 87) (dual of [(164, 4), 521, 88]-NRT-code) [i]
6No linear OOA(3135, 164, F3, 5, 87) (dual of [(164, 5), 685, 88]-NRT-code) [i]
7No digital (48, 135, 164)-net over F3 [i]Extracting Embedded Orthogonal Array
8No linear OA(3136, 198, F3, 87) (dual of [198, 62, 88]-code) [i]Construction Y1 (Bound)