Information on Result #547790

There is no linear OA(3140, 182, F3, 91) (dual of [182, 42, 92]-code), because construction Y1 would yield
  1. linear OA(3139, 160, F3, 91) (dual of [160, 21, 92]-code), but
  2. OA(342, 182, S3, 22), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(3141, 183, F3, 92) (dual of [183, 42, 93]-code) [i]Truncation
2No linear OOA(3141, 182, F3, 2, 92) (dual of [(182, 2), 223, 93]-NRT-code) [i]m-Reduction for OOAs
3No linear OOA(3140, 182, F3, 2, 91) (dual of [(182, 2), 224, 92]-NRT-code) [i]Depth Reduction
4No linear OOA(3140, 182, F3, 3, 91) (dual of [(182, 3), 406, 92]-NRT-code) [i]
5No linear OOA(3140, 182, F3, 4, 91) (dual of [(182, 4), 588, 92]-NRT-code) [i]
6No linear OOA(3140, 182, F3, 5, 91) (dual of [(182, 5), 770, 92]-NRT-code) [i]
7No digital (49, 140, 182)-net over F3 [i]Extracting Embedded Orthogonal Array