Information on Result #547859

There is no linear OA(4120, 206, F4, 85) (dual of [206, 86, 86]-code), because construction Y1 would yield
  1. OA(4119, 146, S4, 85), but
    • the linear programming bound shows that M ≥ 1 306185 861782 156678 344154 323879 967306 788722 965824 745661 222897 819372 462131 226542 873931 415552 / 2 755682 499112 350745 > 4119 [i]
  2. OA(486, 206, S4, 60), but
    • discarding factors would yield OA(486, 145, S4, 60), but
      • the linear programming bound shows that M ≥ 70 960269 863126 606518 991667 215730 563206 075021 389069 425781 018295 735734 868068 159984 954116 355960 140231 669388 460318 751919 101866 886859 928826 023614 873600 / 11532 795767 709720 554647 969916 716816 544438 820799 421172 775769 384715 477815 805045 795696 528849 736837 > 486 [i]

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(4120, 206, F4, 2, 85) (dual of [(206, 2), 292, 86]-NRT-code) [i]Depth Reduction
2No linear OOA(4120, 206, F4, 3, 85) (dual of [(206, 3), 498, 86]-NRT-code) [i]
3No digital (35, 120, 206)-net over F4 [i]Extracting Embedded Orthogonal Array