Information on Result #547863

There is no linear OA(4125, 191, F4, 89) (dual of [191, 66, 90]-code), because construction Y1 would yield
  1. OA(4124, 148, S4, 89), but
    • the linear programming bound shows that M ≥ 8665 917257 296778 952342 423789 447146 428779 676886 749927 658316 397291 649757 237344 216595 862069 968896 / 15 234037 624603 222425 > 4124 [i]
  2. OA(466, 191, S4, 43), but
    • the linear programming bound shows that M ≥ 28 766535 420054 304848 397361 421684 986456 320614 942528 963784 752261 977481 718335 232020 438414 046131 126272 000000 / 5209 403279 129645 739501 754543 221181 850628 166933 877437 442223 389477 > 466 [i]

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(4125, 191, F4, 2, 89) (dual of [(191, 2), 257, 90]-NRT-code) [i]Depth Reduction
2No linear OOA(4125, 191, F4, 3, 89) (dual of [(191, 3), 448, 90]-NRT-code) [i]
3No digital (36, 125, 191)-net over F4 [i]Extracting Embedded Orthogonal Array