Information on Result #547950

There is no linear OA(5115, 263, F5, 87) (dual of [263, 148, 88]-code), because construction Y1 would yield
  1. OA(5114, 148, S5, 87), but
    • the linear programming bound shows that M ≥ 63687 687420 768027 997189 489566 120495 525254 388256 273970 899556 895034 800130 250829 397482 448257 505893 707275 390625 / 1273 099402 224877 219656 507008 > 5114 [i]
  2. linear OA(5148, 263, F5, 115) (dual of [263, 115, 116]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(5115, 263, F5, 2, 87) (dual of [(263, 2), 411, 88]-NRT-code) [i]Depth Reduction
2No linear OOA(5115, 263, F5, 3, 87) (dual of [(263, 3), 674, 88]-NRT-code) [i]
3No digital (28, 115, 263)-net over F5 [i]Extracting Embedded Orthogonal Array