Information on Result #547958

There is no linear OA(5124, 210, F5, 95) (dual of [210, 86, 96]-code), because construction Y1 would yield
  1. OA(5123, 145, S5, 95), but
    • the linear programming bound shows that M ≥ 523946 922524 269524 545786 907827 294722 187715 168920 019132 326750 498085 399243 564097 560010 850429 534912 109375 / 4025 476446 595648 > 5123 [i]
  2. OA(586, 210, S5, 65), but
    • discarding factors would yield OA(586, 145, S5, 65), but
      • the linear programming bound shows that M ≥ 1 681971 586304 181223 187907 190141 264188 172812 749344 276629 843014 476462 881651 126808 966524 933987 666420 440086 867329 609762 499671 015636 681116 117777 216867 334999 506056 192331 016063 690185 546875 / 1 235197 506395 108210 300700 030853 409382 253498 637886 138574 180390 146599 149915 868081 543662 842688 306834 854616 250416 282850 014131 > 586 [i]

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(5124, 210, F5, 2, 95) (dual of [(210, 2), 296, 96]-NRT-code) [i]Depth Reduction
2No linear OOA(5124, 210, F5, 3, 95) (dual of [(210, 3), 506, 96]-NRT-code) [i]
3No digital (29, 124, 210)-net over F5 [i]Extracting Embedded Orthogonal Array