Information on Result #548042

There is no linear OA(1690, 150, F16, 84) (dual of [150, 60, 85]-code), because construction Y1 would yield
  1. linear OA(1689, 94, F16, 84) (dual of [94, 5, 85]-code), but
  2. OA(1660, 150, S16, 56), but
    • discarding factors would yield OA(1660, 147, S16, 56), but
      • the linear programming bound shows that M ≥ 939765 966922 797477 814596 181274 291363 410391 878783 132568 319700 182987 088048 908156 194099 962624 995855 466829 447168 / 521248 355323 503233 415469 012835 684063 > 1660 [i]

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(1691, 151, F16, 85) (dual of [151, 60, 86]-code) [i]Truncation
2No linear OOA(1691, 150, F16, 2, 85) (dual of [(150, 2), 209, 86]-NRT-code) [i]m-Reduction for OOAs
3No linear OOA(1690, 150, F16, 2, 84) (dual of [(150, 2), 210, 85]-NRT-code) [i]Depth Reduction
4No digital (6, 90, 150)-net over F16 [i]Extracting Embedded Orthogonal Array