Information on Result #548070
There is no linear OA(3105, 224, F3, 64) (dual of [224, 119, 65]-code), because construction Y1 would yield
- OA(3104, 150, S3, 64), but
- the linear programming bound shows that M ≥ 24090 181438 283577 330749 823810 837311 447745 255812 944625 866896 355094 419670 238209 625117 / 575 377332 629089 480249 998798 828125 > 3104 [i]
- linear OA(3119, 224, F3, 74) (dual of [224, 105, 75]-code), but
- discarding factors / shortening the dual code would yield linear OA(3119, 187, F3, 74) (dual of [187, 68, 75]-code), but
- construction Y1 [i] would yield
- OA(3118, 149, S3, 74), but
- the linear programming bound shows that M ≥ 14631 013686 142997 953866 980562 476233 047154 143146 692997 967075 486096 911649 489501 / 62 737137 135696 970925 > 3118 [i]
- OA(368, 187, S3, 38), but
- the linear programming bound shows that M ≥ 4 185011 256460 307952 313976 653889 690485 861995 490330 218229 391251 955691 449885 824042 401792 / 14773 934323 743575 783185 881134 593137 934301 575737 911449 > 368 [i]
- OA(3118, 149, S3, 74), but
- construction Y1 [i] would yield
- discarding factors / shortening the dual code would yield linear OA(3119, 187, F3, 74) (dual of [187, 68, 75]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
None.