Information on Result #548121
There is no linear OA(255, 63, F2, 28) (dual of [63, 8, 29]-code), because “BJV†bound on codes from Brouwer’s database
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(255, 63, F2, 29) (dual of [63, 8, 30]-code) | [i] | Strength Reduction | |
2 | No linear OA(254, 62, F2, 28) (dual of [62, 8, 29]-code) | [i] | Code Embedding in Larger Space | |
3 | No linear OA(256, 64, F2, 29) (dual of [64, 8, 30]-code) | [i] | Truncation | |
4 | No linear OA(257, 65, F2, 30) (dual of [65, 8, 31]-code) | [i] | ||
5 | No linear OA(258, 66, F2, 31) (dual of [66, 8, 32]-code) | [i] | ||
6 | No linear OOA(256, 63, F2, 2, 29) (dual of [(63, 2), 70, 30]-NRT-code) | [i] | m-Reduction for OOAs | |
7 | No linear OOA(257, 63, F2, 2, 30) (dual of [(63, 2), 69, 31]-NRT-code) | [i] | ||
8 | No linear OOA(258, 63, F2, 2, 31) (dual of [(63, 2), 68, 32]-NRT-code) | [i] | ||
9 | No linear OOA(260, 63, F2, 2, 33) (dual of [(63, 2), 66, 34]-NRT-code) | [i] | ||
10 | No linear OOA(261, 63, F2, 2, 34) (dual of [(63, 2), 65, 35]-NRT-code) | [i] | ||
11 | No linear OOA(262, 63, F2, 2, 35) (dual of [(63, 2), 64, 36]-NRT-code) | [i] | ||
12 | No linear OOA(263, 63, F2, 2, 36) (dual of [(63, 2), 63, 37]-NRT-code) | [i] | ||
13 | No linear OOA(264, 63, F2, 2, 37) (dual of [(63, 2), 62, 38]-NRT-code) | [i] | ||
14 | No linear OOA(265, 63, F2, 2, 38) (dual of [(63, 2), 61, 39]-NRT-code) | [i] | ||
15 | No linear OOA(266, 63, F2, 2, 39) (dual of [(63, 2), 60, 40]-NRT-code) | [i] | ||
16 | No linear OOA(267, 63, F2, 2, 40) (dual of [(63, 2), 59, 41]-NRT-code) | [i] | ||
17 | No linear OOA(268, 63, F2, 2, 41) (dual of [(63, 2), 58, 42]-NRT-code) | [i] | ||
18 | No linear OOA(269, 63, F2, 2, 42) (dual of [(63, 2), 57, 43]-NRT-code) | [i] | ||
19 | No linear OOA(270, 63, F2, 2, 43) (dual of [(63, 2), 56, 44]-NRT-code) | [i] | ||
20 | No linear OOA(271, 63, F2, 2, 44) (dual of [(63, 2), 55, 45]-NRT-code) | [i] | ||
21 | No linear OOA(272, 63, F2, 2, 45) (dual of [(63, 2), 54, 46]-NRT-code) | [i] | ||
22 | No linear OOA(273, 63, F2, 2, 46) (dual of [(63, 2), 53, 47]-NRT-code) | [i] | ||
23 | No linear OOA(274, 63, F2, 2, 47) (dual of [(63, 2), 52, 48]-NRT-code) | [i] | ||
24 | No linear OOA(275, 63, F2, 2, 48) (dual of [(63, 2), 51, 49]-NRT-code) | [i] | ||
25 | No linear OOA(276, 63, F2, 2, 49) (dual of [(63, 2), 50, 50]-NRT-code) | [i] | ||
26 | No linear OOA(277, 63, F2, 2, 50) (dual of [(63, 2), 49, 51]-NRT-code) | [i] | ||
27 | No linear OOA(278, 63, F2, 2, 51) (dual of [(63, 2), 48, 52]-NRT-code) | [i] | ||
28 | No linear OOA(279, 63, F2, 2, 52) (dual of [(63, 2), 47, 53]-NRT-code) | [i] | ||
29 | No linear OOA(280, 63, F2, 2, 53) (dual of [(63, 2), 46, 54]-NRT-code) | [i] | ||
30 | No linear OOA(281, 63, F2, 2, 54) (dual of [(63, 2), 45, 55]-NRT-code) | [i] | ||
31 | No linear OOA(255, 63, F2, 2, 28) (dual of [(63, 2), 71, 29]-NRT-code) | [i] | Depth Reduction | |
32 | No linear OOA(255, 63, F2, 3, 28) (dual of [(63, 3), 134, 29]-NRT-code) | [i] | ||
33 | No linear OOA(255, 63, F2, 4, 28) (dual of [(63, 4), 197, 29]-NRT-code) | [i] | ||
34 | No linear OOA(255, 63, F2, 5, 28) (dual of [(63, 5), 260, 29]-NRT-code) | [i] | ||
35 | No linear OOA(255, 63, F2, 6, 28) (dual of [(63, 6), 323, 29]-NRT-code) | [i] | ||
36 | No linear OOA(255, 63, F2, 7, 28) (dual of [(63, 7), 386, 29]-NRT-code) | [i] | ||
37 | No linear OOA(255, 63, F2, 8, 28) (dual of [(63, 8), 449, 29]-NRT-code) | [i] | ||
38 | No digital (27, 55, 63)-net over F2 | [i] | Extracting Embedded Orthogonal Array | |
39 | No linear OA(2111, 120, F2, 56) (dual of [120, 9, 57]-code) | [i] | Residual Code |