Information on Result #548342

There is no linear OA(2153, 162, F2, 78) (dual of [162, 9, 79]-code), because residual code would yield linear OA(275, 83, F2, 39) (dual of [83, 8, 40]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(2154, 163, F2, 79) (dual of [163, 9, 80]-code) [i]Truncation
2No linear OOA(2153, 162, F2, 2, 78) (dual of [(162, 2), 171, 79]-NRT-code) [i]Depth Reduction
3No linear OOA(2153, 162, F2, 3, 78) (dual of [(162, 3), 333, 79]-NRT-code) [i]
4No linear OOA(2153, 162, F2, 4, 78) (dual of [(162, 4), 495, 79]-NRT-code) [i]
5No linear OOA(2153, 162, F2, 5, 78) (dual of [(162, 5), 657, 79]-NRT-code) [i]
6No linear OOA(2153, 162, F2, 6, 78) (dual of [(162, 6), 819, 79]-NRT-code) [i]
7No linear OOA(2153, 162, F2, 7, 78) (dual of [(162, 7), 981, 79]-NRT-code) [i]
8No linear OOA(2153, 162, F2, 8, 78) (dual of [(162, 8), 1143, 79]-NRT-code) [i]